我的账户
曲周信息社

自媒体资讯干货

亲爱的游客,欢迎!

已有账号,请

立即登录

如尚未注册?

加入我们
  • 客服电话
    点击联系客服

    在线时间:8:00-16:00

    客服电话

    400-000-0000

    电子邮件

    xjubao@163.com
  • APP下载

    曲周信息社APP

    随时随地掌握行业动态

  • 官方微信

    扫描二维码

    关注曲周信息社公众号

曲周信息社 网站首页 资讯列表 资讯内容

分数的基本性质及其最大公因数与最小公倍数的求解方法

2023-10-10 发布于 曲周信息社
分数的意义是,一个整体可以被平均分成若干份,每一份可以用分数来表示。
单位“1”是指一个整体,可以用自然数1来表示。例如,一群羊可以看作一个整体,平均分成若干份后,每一份就是羊的一部分,可以用分数来表示。
分数单位是指把单位“1”平均分成若干份后,每一份的大小。例如,45 的分数单位是15,表示把单位“1”平均分成5份后,其中的一份就是15。
二年级下册数学思维训练题100道
四年级下册数学简便运算题600道
二年级数学题100道加减混合运算题
几个数公有的因数叫这些数的公因数,其中最大的那个就叫它们的最大公因数。
用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来)
几个数公有的倍数叫这些数的公倍数,其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)
用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)
如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
求法一:列举求同法
最大公因数的求法:
12的因数有:1、12、2、6、3、4
16的因数有:1、16、2、8、4
最大公因数是4
最小公倍数的求法:
12的倍数有:12、2 × 12、3 × 12、4 × 12、…
16的倍数有:16、2 × 16、4 × 16、8 × 16、…
最小公倍数是4 × 2 × 2 × 3 = 48 (相同乘 × 不同乘 × )
求法二:分解质因数法
12=2×2×3
16=2×2×2×2
最大公因数是:2×2=4 (相同乘)
最小公倍数是:2×2×3×2×2=48 (相同乘× 不同乘× )
求法三:短除法
最大公因数是4

最小公倍数是48


用短除法求下列各组数的最小公倍数。
12和18         ②30和75        ③6、12和30       ④28、42和84
想:用短除法求几个数的最小公倍数,一般用这几个数的公因数去除这几个数(从最小的公因数开始),一直除到任意两个商的公因数只有1为止。再把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数。几个数的最小公倍数用[  ]表示。
《最小公倍数就是外面一圈所有的数连乘》

我们知道,对于两个数来说,最大公因数和最小公倍数是相辅相成的。最大公因数可以通过两数之积除以最小公倍数来得到,最小公倍数可以通过两数之积除以它们的最大公因数来得到。
对于多个数来说,最小公倍数的求法比较复杂。但是,如果这些数之间存在明显的倍数关系,那么我们就可以利用这个倍数关系来求得最小公倍数。
例如,我们知道30×75=2250,6×12×30=2160,28×42×84=9408。因此,30和75的最小公倍数是2250,6、12和30的最小公倍数是2160,而28、42和84的最小公倍数是9408。
因此,我们可以得出结论:对于任意两个正整数 a 和 b,它们的最大公因数为 gcd(a,b),最小公倍数为 lcm(a,b),满足以下关系:
gcd(a,b)×lcm(a,b)=a×b
对于多个正整数来说,最小公倍数的求法比较复杂。但是,如果这些数之间存在明显的倍数关系,那么我们就可以利用这个倍数关系来求得最小公倍数。
例如,对于12,24,36这三个数来说,它们的最小公倍数就是它们的所有可能的公共倍数的最小值。因此,我们可以列举出它们的所有可能的公共倍数:
12×1=12
12×2=24
12×3=36
12×4=48
12×5=60
12×6=72
12×7=84
12×8=96
12×9=108
12×10=120
其中最小的公共倍数是 120,因此 lcm(12,24,36)=120。
1

鲜花
1

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

相关阅读

  • 曲周信息社
    1970-01-01
  • 曲周信息社
    1970-01-01
  • 曲周信息社
    1970-01-01
  • 曲周信息社
    1970-01-01
  • 曲周信息社
    1970-01-01
  • 曲周信息社
    1970-01-01
曲周信息社

扫一扫二维码关注我们Get最新资讯

相关分类
热点推荐
关注我们
曲周信息社与您同行

客服电话:400-000-0000

客服邮箱:xjubao@163.com

周一至周五 9:00-18:00

曲周信息社 版权所有

Powered by 曲周信息社 X1.0@ 2015-2020